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Abstract—Dynamic ridesharing refers to services that arrange
one-time shared rides on short notice. It underpins various
real-world intelligent transportation applications such as car-
pooling, food delivery and last-mile logistics. A core operation
in dynamic ridesharing is the “insertion operator”. Given a
worker and a feasible route which contains a sequence of origin-
destination pairs from previous requests, the insertion operator
inserts a new origin-destination pair from a newly arrived
request into the current route such that certain objective is
optimized. Common optimization objectives include minimizing
the maximum flow time of all requests and minimizing the
total travel time of the worker. Despite its frequent usage, the
insertion operator has a time complexity of O(n3), where n is
the number of all requests assigned to the worker. The cubic
running time of insertion fundamentally limits the efficiency
of urban-scale dynamic ridesharing based applications. In this
paper, we propose a novel partition framework and a dynamic
programming based insertion with a time complexity of O(n2).
We further improve the time efficiency of the insertion operator
to O(n) harnessing efficient index structures, such as fenwick
tree. Evaluations on two real-world large-scale datasets show
that our methods can accelerate insertion by 1.5 to 998.1 times.

I. INTRODUCTION

Dynamic ridesharing refers to services that arrange one-time

shared rides on short notice. It underpins various real-world

intelligent transportation applications such as car-pooling, food

delivery and last-mile logistics [1]. For a set of workers and

a sequence of dynamic requests, one primary function in

dynamic ridesharing is to arrange for each worker a route

to pick up and drop off requests. A worker can be a driver

in car-pooling or a courier in food delivery and logistics,

while a request can be one or multiple passengers or parcels

accordingly. Dynamic ridesharing has been extensively studied

in the database community [2], [3], [4], [5], [6], [7], [8]. It has

been proved that there is no polynomial-time algorithm with

a constant competitive ratio to solve the problem [8]. Hence

many real-world ridesharing platforms, such as Didi Chuxing

and Uber, rely on heuristic algorithms [2], [4], [5], [8].

Insertion, or an “insertion operator”, is widely adopted in
various heuristic solutions to dynamic ridesharing [9], [10],

[11], [12], [2], [4], [5], [8] and is recognized as a core operator

in these solutions [13], [14], [15], [16]. Given a worker and a

feasible route which contains a sequence of origin-destination

pairs from previous requests, insertion, a.k.a. an insertion
operator, inserts a new origin-destination pair from a newly

arrived request into the current route such that certain objective

is optimized. The objective of a generic insertion operator

is defined from the perspective of either the requests or the

worker. From the requests’ perspective, insertion needs to min-

imize the maximum waiting time/distance of all the requests.

From the workers’ perspective, insertion should minimize the

total travel time/distance of the worker.

Despite its importance, the generic insertion operator re-

mains an efficiency bottleneck for dynamic ridesharing al-

gorithms. The insertion that optimizes from the requests’

perspective has a time complexity of O(n3), where n is the
number of all the requests for the worker. The cubic running

time limits the efficiency of urban-scale dynamic ridesharing

based applications. Although a linear-time insertion algorithm

that optimizes the objective from the workers’ perspective has

been proposed [8], it cannot be adapted for the optimization

objective from the requests’ perspective as the linear-time

insertion algorithm in [8] is derived from a special recursion

relationship for the objective from the workers’ perspective.

To break the efficiency bottleneck, we propose a partition-

based framework and devise an O(n2)-time insertion operator.
In addition, we harness efficient index structures, such as the

fenwick tree [17], and further reduce the time complexity of

a generic insertion operator to linear time.

Our main contributions can be summarized as follows.

• We systematically study the generic insertion operator

for dynamic ridesharing and propose a partition-based

framework to reduce the time complexity of a generic

insertion operator to O(n2).
• Based on the partition-based framework, we further im-

prove the time efficiency of the insertion operator to O(n)
utilizing efficient index structures, such as fenwick tree.

• Experimental results show that our algorithms can speed

up the insertion operator by 1.5 to 998.1 times on real-

world urban-scale datasets.

In the rest of this paper, we formally introduce the insertion

operator in Sec. II and review existing solutions in Sec. III.

We propose a partition-based framework in Sec. IV and design

a series of linear-time optimization techniques to reduce the

time complexity of insertion in Sec. V. Finally we present the

evaluations in Sec. VI and conclude in Sec. VII.

II. PROBLEM STATEMENT

This section presents the generic formulation of the insertion

operator in ridesharing services.
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Definition 1 (Worker). A worker is defined as w =< ow, cw >
with a current location of ow and a capacity of cw, where the
capacity is the maximum number of passengers/parcels w can
take at the same time.

Definition 2 (Request). A request is defined as r =<
or, dr, tr, er, cr >, with an origin or, a destination dr, a
release time tr, a deadline er, and a capacity cr, where cr
is the number of passengers/parcels for request r. A request
r can be completed if it is picked up after tr and delivered
before er by a worker.

For ease of presentation, denote R = {r1, r2, ..., r|R|} as the
set of requests assigned to w yet have not been completed.

Definition 3 (Route). Given a worker w and a request set
R, a route of w is defined as SR = 〈l0, l1, l2, ..., ln〉, which
is a sequence of w’s current location and all the origins and
destinations of the requests in R, i.e. l0 = ow and li ∈ {or|r ∈
R} ∪ {dr|r ∈ R} for all 1 ≤ i ≤ n. We use n to denote the
number of locations in SR except the current location of w.
A route is feasible if the following constraints are satisfied.

• Order Constraint. ∀r ∈ R, or lies before dr, i.e., a
request is picked up before delivered;

• Deadline Constraint. ∀r ∈ R, the worker w completes

r before its deadline er, i.e., all the assigned requests can
be completed;

• Capacity Constraint. At any time, the total capacity of
all requests that have been picked up but not delivered

does not exceed the capacity of w.

Definition 4 (Flow Time). Given a worker w, a request set R
and a feasible route SR, the flow time of each request r ∈ R
is the duration between tr and the time that r is delivered
(denoted by delv(r)), i.e. flw(r) = delv(r)− tr.

Definition 5 (Insertion Operator). Given a worker w, a
feasible route SR, and a new request r′, the insertion operator
inserts or′ and dr′ into SR to obtain a new feasible route SR+
(R+ = R∪{r′}). Depending on the specific applications, one
of the following objective functions should be minimized.
(1) Maximum flow time of all the requests [18], [19], [20],

[9], [10], i.e. maxr∈R+{flw(r)}.
(2) Total travel time of the worker [12], [2], [4], [8], or

equivalently, the delivery time of the last request, i.e.
maxr∈R+{delv(r)}.

We make two remarks on the insertion operator.

• For brevity,“insertion (i, j)” is used to denote the inser-
tion of or′ after li and dr′ after lj .

• For convenience, we rewrite the two objective functions

into a unified form as

OBJ(SR+) = max
r∈R+

{flw(r) + α · tr}, (1)

where α is either 1 or 0. Note that

OBJ(SR+) =

{
maximum flow time, α = 0
total travel time, α = 1

(2)

The following example illustrates the insertion operator.

(a) Route before insertion. (b) Route after insertion.

Fig. 1: An example of insertion.

TABLE I: Information of requests.

request
release time

tr
deadline

er
origin
or

destination
dr

capacity
cr

r1 0 25 (4, 4) (10, 4) 1
r2 0 37 (8, 8) (4, 0) 1
r3 0 33 (10, 2) (10, 0) 1
r′ 2 26 (4, 6) (6, 2) 1

Example 1. Suppose that on a ridesharing platform a driver
w is serving three requests r1, r2 and r3. At time 2, a new
request r′ arrives and we try to insert r′ into the current route
SR of w. The origins and destinations of requests are shown
in Fig. 1a, and their information is shown in Table I. At this
time SR = 〈ow, or1 , or2 , dr1 , or3 , dr3 , dr2〉, where ow = (2, 4).
We account the travel time between locations to one decimal
place. We also assume that the capacity of the worker cw is
4 and the capacity of all the requests is 1.

The new route SR+ should satisfy the capacity constraint
and deadline constraint, and keep the order of r1-r3’s origins
and destinations the same as in SR. A feasible route after
insertion is to insert or′ and dr′ after ow and dr3 respectively,
as shown in Fig. 1b. In the new route SR+ , the flow time of
four requests is flw(r1) = (2+2.8+2+5.7+4.5)−0 = 17,
flw(r2) = (2+2.8+2+5.7+4.5+2+2+4.5+2.8)−0 = 28.3,
flw(r3) = (2 + 2.8 + 2 + 5.7 + 4.5 + 2 + 2) − 0 = 21,
flw(r′) = (2 + 2.8 + 2 + 5.7 + 4.5 + 2 + 2 + 4.5) − 2 =
23.5, respectively. Thus, the maximum flow time of the route
is max{17, 28.3, 21, 23.5} = 28.3; and the total travel time of
the route is 2+2.8+2+5.7+4.5+2+2+4.5+2.8 = 28.3.

III. RELATED WORK

Ridesharing services first emerged in 1970s as a result of the

oil crisis and has received increasingly attention due to the de-

velopment of the mobile Internet, sharing economy and spatial

crowdsourcing [22], [23], [24], [25]. The first research paper

dates back to the pickup and delivery problem (a.k.a. dial-a-
ride problem) proposed in 1975 [26], and has been extensively

studied by the database, data mining, transportation science

and operations research communities. For nearly 50 years,

neither super-constant approximation algorithms nor hardness

results are known for the dial-a-ride problem. Instead, insertion
is widely used by various heuristic solutions to ridesharing [9],

[10], [11], [27], [28], [12], [2], [4], [8] and is regarded as a

basic operator in ridesharing [13], [14], [15]. Table II lists

some of the most representative solutions to ridesharing based

on insertion under different optimization objectives.
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TABLE II: Time complexity for insertion in existing works.

Method and Reference Objective Constraint Time Datasets for
Evaluation

exact [18] max flow time order, capacity O(n4) synthetic

sequential insertion [11] max flow time order, capacity, deadline O(n3) synthetic

adaptive insertion [9] max flow time order, capacity, deadline O(n3) synthetic

large-scale insertion [10] max flow time order, capacity, deadline O(n3) synthetic

clustering insertion [12] total travel time order, capacity, deadline O(n3) synthetic

tshare [2], [3] total travel time order, capacity, deadline O(n3) ridesharing

kinetic [4], [7], [6], [21] and single rider insertion [5] total travel time order, capacity, deadline O(n2) ridesharing
pruneGreedyDP [8] total travel time order, capacity, deadline O(n) ridesharing

our approach in this paper
max flow time order, capacity, deadline O(n) ridesharing

&logisticstotal travel time order, capacity, deadline O(n)

Alg. 1 illustrates a straightforward implementation of inser-

tion. It enumerates all insertions and finds a route with minimal

OBJ(SR+). Enumerating (i, j) (lines 2-3) is operated O(n
2)

times, while checking constraints and calculating the objective

of the new route in lines 5-6 need O(n) time. Hence its time
complexity is O(n3), where n is the number of locations in
SR+ . We review the usage of insertion for ridesharing services
of different optimization objectives below.

Algorithm 1: Brute Force Algorithm
input : A worker w with route SR, a new request r

′

output: A new route SR+
1 O∗ ← ∞, SR+ ← SR;
2 for i← 0 to n do
3 for j ← i to n do
4 S ← insert or′ after li and dr′ after lj in SR;
5 if S is feasible and OBJ(S) < O∗ then
6 O∗ ← OBJ(S), SR+ ← S;

7 return SR+ ;

Maximum flow time models the longest waiting time of the
requests before they are served. It was first used to evaluate the

inconvenience or dissatisfaction of the requests (passengers) in

ridesharing services. To minimize the maximum flow time in

ridesharing, Psaraftis [18] proposes an exact solution for this

NP-hard problem. Since the solution takes exponential time,

it is only applicable to small datasets (e.g. the total number of
requests is fewer than 10 [18]). To handle larger n (e.g. the
total number of requests is around 3000 [11]), Jaw et al. [11]
propose a sequential insertion procedure, i.e., sequentially
inserting one request into the current route of the worker.

The insertion procedure is widely used by many following

papers [9], [10], [29]. Hame et al. [9] utilize insertion to
adaptively solve the problem of [18]. For larger-scale datasets,

Krumke et al. [10], [29] design a batch based framework where
insertion can be directly used. Currently, it still takes O(n)
time to calculate the objective and check constraints [11], [9],

[10] and the insertion to minimize the maximum flow time

takes O(n3) time [11], [9], [10].
Total travel time indicates the preference of workers [30],

i.e., a worker usually wants to serve all requests in less time.
To minimize the total travel time in ridesharing, Iochim et
al. [12] cluster the nearest requests first and then construct

the route for each worker by repeated insertion. They use

the insertion procedure of [11] in O(n3) time and insert
requests into different routes in parallel. Zheng et al. [2], [3]
design a general framework that repeatedly executes an O(n3)
insertion. Huang et al. [4] combines insertion and a trie-based
data structure called kinetic such that the time complexity of

insertion is reduced to O(n2). Kinetic is widely used by other
proposals to minimize the total travel time of ridesharing [7],

[6], [21]. Cheng et al. [5] propose another implementation of
the O(n2) insertion called single rider insertion. Very recently,
Tong et al. [8] further accelerate the insertion operator to
minimize the total travel time to linear time.

In summary, insertion is the cornerstone of many existing

solutions to ridesharing. Although insertion with linear time

has been proposed for some special optimization objectives,

the generic insertion operator still takes O(n3) time. With
the increasing scale and real-time requirement of ridesharing

services, the efficiency of the insertion operator has become

a bottleneck. In this work, we accelerate the generic insertion

operator to linear time.

IV. A PARTITION-BASED FRAMEWORK

In this section, we introduce a partition-based framework

that leads to an O(n2) insertion operator. The key enabler is
to check constraints and calculate the objective in O(1) time
using the partition framework rather than in O(n) time as
needed in the straightforward implementation of insertion in

Alg. 1. We first explain the basic idea of partition in Sec. IV-A,

based on which we devise an insertion operator of O(n2) time
complexity using dynamic programming in Sec. IV-B.

A. Rationale of Partition
The key observation of the partition-based framework is that

we can partition the requests (i.e., R+, including the current
requests R and the new request r′) into four disjoint sets and
handle their constraints and objective independently.
The partition of requests is based on the concept of de-

tour. A detour represents the increased travel time after

inserting a new location compared with the travel time of

the original route. Formally, the detour det(k, p) of inserting
origin/destination p between k-th location and (k + 1)-th
location of route SR can be calculated as below:

det(k, p) = dis(lk, p) + dis(p, lk+1)− dis(lk, lk+1).
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Fig. 2: An example of detour for insertion (i, j).

Fig. 3: An example of request partition (i < j).

As shown in Fig. 2, given insertion (i,j), we focus on two
detours det(i, or′) and det(j, dr′), i.e., the detour of inserting
or′ (the increased travel time from the i-th location and the (i+
1)-th location) and the detour of inserting dr′ (the increased
travel time from the j-th location and the (j+1)-th location).
According to the difference in the impact of detours due to

insertion (i, j) of a new request r′, we can now partition all

the requests into four disjoint sets (see Fig. 3).

• R1 contains the requests whose destinations are before
the i-th location (i included). All the requests in this set
are not influenced by the detour of inserting or′ and dr′ .

• R2 contains the requests whose destinations are between
the i-th location (i excluded) and the j-th location (j
included). All the requests in this set are influenced by

detour of inserting or′ .
• R3 contains the requests whose destinations are after the
j-th location (j excluded). All the requests in this set are
influenced by detours of inserting or′ and dr′ .

• R4 contains the new request r
′, which causes the detour.

With the above partition, Eq.(1) can be rewritten as

OBJ(SR+) = max{mf1,mf2,mf3,mf4} (3)

where
mf1 = max

r∈R1
{flw(r) + αtr}

mf2 = max
r∈R2

{flw(r) + αtr}
mf3 = max

r∈R3
{flw(r) + αtr}

mf4 = max
r∈R4

{flw(r) + αtr}

Based on Eq.(3), we can also reformulate the framework of

insertion as in Alg. 2. Specifically, for each pair of (i, j) for
insertion (lines 1-2), we first check in line 3 if the capacity

and deadline constraints are violated (Sec. IV-B1). If not, we

calculate in line 4 the values of mf1,mf2,mf3,mf4. We
finally calculate the objective in line 5 and update (i∗, j∗)
which represents the best insertion locations in line 6.

B. Naive Dynamic Programming Based Insertion

This subsection introduces an O(n2) insertion operator

based on the partition framework in Sec. IV-A. The key insight

is that the partition allows pre-calculation of some variables

such that checking constraints and calculating the objectives

Algorithm 2: Framework
input : A worker w with route SR, a new request r

′

output: A new route SR+
1 for i← 0 to n do
2 for j ← i to n do
3 Check the capacity and deadeline constraints;

4 Compute mf1,mf3,mf2,mf4 of insertion (i, j);
5 OBJ← max{mf1,mf2,mf3,mf4};
6 Update (i∗, j∗) with (i, j) according to OBJ;

can be performed in O(1) time rather than O(n) as in Alg. 1.
Table III summarizes the major notations.

1) Checking Capacity and Deadline Constraints: Recall
that capacity constraint means that at any time the number

of passengers/parcels carried by a worker cannot exceed the

worker’s capacity and the deadline constraint means all the

requests picked by the worker should be delivered before the

requests’ deadlines. We next show how to check these two

constraints in O(1) with variables pck(·) and slk(·).
1.1) Checking Capacity Constraint. Given SR, pck(k) is

defined as the number of requests picked but not delivered

after w arrives at lk. For all 0 ≤ k ≤ n, pck(k) can be pre-
calculated in O(n). With pck(k) we can check the capacity
constraint in O(1) through Lemma. 1.

Lemma 1. The capacity constraint will not be violated iff
pck(i) ≤ cw − cr′ and pck(j) ≤ cw − cr′ .

Proof. On the one hand, to insert or′ after li, pck(i) must
be less or equal to cw − cr′ , such that the worker’s capacity
is not exceeded. On the other hand, if pck(j) > cw − cr′ ,
then for any j′ > j, insertion (i, j′) will also violate the
capacity constraint. This is because during the traversal from li
to lj′ , the number of passengers/parcels carried will exceed the
capacity of worker at lj . Thus we can break the enumeration
of j in our framework. Based on the statement above, for
the current insertion (i, j), if we find pck(j) ≤ cw − cr′ , the
insertion will not violate the capacity constraint.

1.2) Checking Deadline Constraint. Define slk(k) as the
maximum tolerable time for detour after lk to satisfy the
deadline constraint (i.e., slack time). Thus,

slk(k) = min{slk(k + 1), ddl(k + 1)− arr(k + 1)}
where arr(k) represents the arrival time to reach lk in the
original route and ddl(k) represents the latest time to arrive
at lk without violating the deadline constraint. Specifically
ddl(k) can be calculated as

ddl(k) =

{
er − dis(or, dr), lk is an origin

er, lk is a destination.
(4)

The value of slk(k) for all 0 ≤ k ≤ n can be pre-

calculated in O(n) before enumerating all pairs (i, j) for
insertion. With slk(k) we can check the deadline constraint
in O(1). Specifically, three cases should be checked.
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TABLE III: Summary of major notations.

Notation Description
dis(p1, p2) travel time between p1 and p2
det(k, p) the detour time of inserting location p after lk
arr(k) arrival time of lk

mobj(i, j)
maximum flw(r) + αtr for requests whose

destinations are between li and lj in the original route
slk(k) maximum tolerable time for detour after lk
pck(k) number of requests picked but not delivered after lk

• Check whether any deadline constraint of all the existing

requests is violated by inserting or′ after li, i.e., whether
det(i, or′) ≤ slk(i);

• Check whether any deadline constraint of all the existing

requests is violated by inserting dr′ after lj , i.e., whether
dis(li, or′)+dis(or′ , dr′)+dis(dr′ , li+1)−dis(li, li+1) ≤
slk(i) when i = j or det(i, or′) + det(j, dr′) ≤ slk(j)
when i < j;

• Check whether the deadline constraint of the new re-

quest is violated, i.e., whether arr(i) + dis(li, or′) +
dis(or′ , dr′) ≤ er′ when i = j or arr(i) + det(i, or′) +
dis(lj , dr∗) ≤ er′ when i < j.

2) Calculating Objectives: We calculate mf1,mf2,mf3
and mf4 in O(1) time during the enumeration of i and j as
follows. Denotemobj(i, j) as the maximum flw(r)+α·tr for
any request whose destination is between the i-th location and
the j-th location. Thus, it takes O(n2) time to pre-calculate
mobj(i, j) by enumerating i from 0 to n and j from i to n.
Since the pre-calculation can be done in O(n2) time before
enumerating all pairs (i, j) for insertion, it only takes O(1)
time to access mobj(i, j) in the enumerations of insertion
(i, j). We next show how to calculatemf1,mf2,mf3 andmf4
in O(1) time in two cases: (i) i < j and (ii) i = j.
When i < j, mf1,mf2,mf3 and mf4 can be calculated

with the help of mobj(i, j) in O(1) time as follows.

• Calculating mf1: As shown in Fig. 3, all the requests in
R1 (whose destination is before the i-th location) are not
influenced by detour. Thus, mf1 can be calculated as

mf1 = mobj(0, i) (5)

• Calculating mf2: As shown in Fig. 3, all the requests
in R2 (whose destination is between the i-th and the j-th
locations) are only influenced by the detour of inserting

i. Specifically, flw(r)+αtr of each request in R2 would
increase by det(i, or′). Thus mf2 can be calculated as

mf2 = det(i, or′) +mobj(i+ 1, j) (6)

• Calculating mf3: As shown in Fig. 3, all the requests
in R3 (whose destination is after the j-th location) are
influenced by the detours of inserting i and j. Specifically,
flw(r) + αtr of each request in R3 would increase by
det(i, or′) + det(j, dr′). Thus mf3 can be calcluated as

mf3 = det(i, or′) + det(j, dr′) +mobj(j + 1, n) (7)

• Calculating mf4: As shown in Fig. 3, R4 only contains
the new request r′. Intuitively, it would take arr(j) +
det(i, or′) time to reach the j-th location, due to detour

Fig. 4: An example of requests partition (i = j).

TABLE IV: Values of mobj(·, ·).

i
j 0 1 2 3 4 5 6

0 0 0 0 14.2 14.2 18.2 24.2
1 - 0 0 14.2 14.2 18.2 24.2
2 - - 0 14.2 14.2 18.2 24.2
3 - - - 14.2 14.2 18.2 24.2
4 - - - - 0 18.2 24.2
5 - - - - - 18.2 24.2
6 - - - - - - 24.2

of inserting i. It will take another dis(lj , dr′) time to
reach the destination of r′. Thus, we have
mf4 = arr(j)+det(i, or′)+dis(lj , dr′)+(α−1)tr′ (8)

When i = j, we calculate mf1,mf2,mf3 and mf4 in O(1)
time. The case when i = j differs from the case when i < j in
two folds. (i) R2 contains no requests when i = j. (ii) detour
is calculated differently. Fig. 4 shows an example of the case

when i = j. Accordingly, when i = j, mf1,mf2,mf3 and
mf4 are calculated as follows.

• Calculating mf1: mf1 is still mobj(0, i) since the
requests in R1 are not influenced by detour.

• Calculating mf2: mf2 is 0 because R2 contains no
requests when i = j.

• Calculating mf3: Denote det(i, r′) as the detour when
i = j. Then the det(i, r′) can be calculated as

dis(li, or′) + dis(or′ , dr′) + dis(dr′ , li+1)− dis(li, li+1)

Thusmf3 can be calculated as det(i, r
′)+mobj(i+1, n).

• Calculating mf4: For mf4, it takes arr(i)+ dis(li, or′)
time to reach or′ and then another dis(or′ , dr′) time to
reach dr′ . Thus mf4 can be calculated as

mf4 = arr(i) + dis(li, or′) + dis(or′ , dr′) + (α− 1)tr′ (9)
In summary, after pre-calculating mobj(·, ·) in O(n2) time,

it takes O(1) time to calculate the objective in Eq.(3).

Example 2. Back to the settings in Example. 1. Suppose
that we want to calculate the maximum flow time of in-
sertion (1, 5). We pre-calculate the values of mobj(·, ·) as
Table IV. Take i = 1 as an example. As l1 and l2 are the
origins of r1 and r2 respectively, we have mobj(1, 1) =
mobj(1, 2) = 0. l3 is the destination of r1, and flw(r1) =
14.2. We have mobj(1, 3) = max{mobj(1, 2), 14.2} = 14.2.
In the same way we have mobj(1, 4) = mobj(1, 3) =
14.2, mobj(1, 5) = max{mobj(1, 4), 18.2} = 18.2 and
mobj(1, 6) = max{mobj(1, 5), 24.2} = 24.2.

Then we can calculate mf1, mf2, mf3 and mf4 as
follows. First the maximum flow time of requests in R1 is
mf1 = mobj(0, 1) = 0. Since det(1, or′) = 0.8, the
maximum flow time of requests in R2 is mf2 = det(1, or′) +
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Algorithm 3: Naive DP Algorithm
input : A worker w with route SR, a new request r

′

output: A new route SR+
1 SR+ ← SR, O

∗ ← ∞, i∗ ← none, j∗ ← none;
2 Pre-calculate pck(·), slk(·),mobj(·, ·);
3 for i← 0 to n do
4 for j ← i to n do
5 if capacity constarint is violated then break ;

6 if deadline constraint is violated then
continue ;

7 mf1,mf2,mf3,mf4 ← calculate by

Eq.(5)-Eq.(9);

8 O ← max{mf1,mf2,mf3,mf4};
9 if O < O∗ then
10 O∗ ← O, i∗ ← i, j∗ ← j;

11 if O∗ <∞ then
12 SR+ ← insert or′ after li∗ and dr′ after lj∗ in SR;

13 return SR+ ;

mobj(2, 6) = 25 (Eq.(6)). As for the requests in R3, we
have det(1, or′) = 0.8 and det(5, dr′) = 1.3. Based on
Eq.(7), the maximum flow time of requests in R3 is mf3 =
det(1, or′)+det(5, dr′)+mobj(6, 6) = 0.8+1.3+24.2 = 26.3.
To obtain the maximum flow time of requests in R4, we first
get arr(5) = 18.2, det(1, or′) = 2 + 4.5 − 5.7 = 0.8
and dis(l5, dr′) = 4.5. Substituting these results into Eq.(8),
we have that the maximum flow time of requests in R4 is
mf4 = arr(5) + det(1, or′) + dis(l5, dr′) = 23.5.

Finally the maximum flow time for insertion (1, 5) is
max{0, 25, 26.3, 23.5} = 26.3.

3) Algorithm Details: Alg. 3 illustrates the procedure of the
naive DP based insertion algorithm. In line 2, we pre-calculate

pck(·), slk(·),mobj(·, ·) as in Sec. IV-B1 and Sec. IV-B2.
While enumerating the pairs (i, j) for insertion in lines 3-4,
we first check the capacity constraint in line 5. If the capacity

constraint is violated, we can directly break the enumeration

of j according to Lemma. 1. Then we check the deadline
constraint in line 6. If all constraints are satisfied, we calculate

mf1,mf2,mf3,mf4 according to Eq.(5)-Eq.(9) in line 7, and
calculate the objective according to Eq.(3) in line 8. In lines

9-10, we update O∗, i∗, and j∗ respectively. Finally we choose
whether to return the new route SR+ or the original route SR
based on O∗ in lines 11-13.

Example 3. Back to the settings in Example. 1. Table V
summarizes the maximum flow time of each insertion (i, j).
Symbol “×” means that the insertion violates the constraints.
The values of mobj(·, ·) have been pre-calculated in Table IV.
Take i = 1 as an example. For each j from 1 to 6, we first check
the capacity and deadline constraints of insertion (i, j). The
insertions (1, 1) to (1, 5) satisfy the constraints. We further
calculate their maximum flow time as 31.3, 31.3, 31.5, 31.5
and 26.3 respectively. From Table V we know that insertion

TABLE V: Values of OBJ(SR+).

i
j 0 1 2 3 4 5 6

0 32.3 30.4 33.3 33.5 33.5 28.3 27.8(×)
1 - 31.3 31.3 31.5 31.5 26.3 25.8(×)
2 - - 33.2 37 37(×) 31.8(×) 31.3(×)
3 - - - 37 42.2(×) 37(×) 36.5(×)
4 - - - - 38.4(×) 39.2(×) 38.7(×)
5 - - - - - 34(×) 33.5(×)
6 - - - - - - 32.7(×)

(1, 5) leads to the minimum maximum flow time of requests.

Complexity Analysis. In line 2, variable pck(·), slk(·) can
be pre-calculated in O(n) time, but variable mobj(·, ·) needs
O(n2) time and O(n2) space to be calculated. Checking

constraints and obtaining OBJ(SR+) while enumerating i and
j can be realized in O(1) time. Hence the total time of lines 3-
10 is O(n2). Lines 11-12 take O(n) time. Thus, the naive DP
based insertion has a time complexity of O(n2) and a space
complexity of O(n2).

V. A SEGMENT BASED DP ALGORITHM

In Sec. IV we propose a naive DP based insertion with

O(n2) time complexity. In this section, we push the limit of
the time complexity of the generic insertion operator to O(n)
time, which is the lower bound of the time complexity, i.e.,
the time of scanning input. We first introduce a new equivalent

expression of objective with only O(n) time of pre-calculation
in Sec. V-A, and then present key observations on the capacity

and the deadline constraints in Sec. V-B. Based on the new

expression and the observations, we introduce the basic idea

of the segment based DP algorithm in Sec. V-C, and describe

the detailed algorithm in Sec. V-D.

A. New Equivalent Expression of Objective

Basic Idea: In Eq.(3), we calculate the objective OBJ(SR+)
as max{mf1,mf2,mf3,mf4} when enumerating i and j.
According to associative law, we can combine the ob-

jective in the following orders: (i) First combine mf2
and mf3 as com1, i.e., com1 = max{mf2,mf3}; (ii)
Then combine mf1 (denoted by com2), i.e., com2 =
max{mf1,mf2,mf3} = max{mf1, com1}; (iii) Finally

combine mf4, i.e., OBJ(SR+) = max{com2,mf4}.
The naive DP insertion needs to pre-calculate a two dimen-

sional arraymobj(i, j), which takes O(n2) time. By following
the above order, we only need a column (j = n) of this array,
i.e., mobj(i, n). We first explain the calculation based on this
new expression when i < j as follows.

• Calculating com1: We first separate the common
term det(i, or′) from max{mf2,mf3} as det(i, or′) +
max{mobj(i+1, j), det(j, dr′)+mobj(j+1, n)}. Then
we focus on mobj(i + 1, j) in the second term because
it cannot be calculated from the one dimentional array
mobj(·, n). The trick is to combine an additional term
mobj(j + 1, n) into the second term as max{mobj(i +
1, j),mobj(j+1, n), det(j, dr′)+mobj(j+1, n)}. Com-
bining mobj(j + 1, n) causes no change in the maxi-
mum because mobj(j + 1, n) is always no larger than
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det(j, dr′) +mobj(j + 1, n). Further note that the max-
imum between mobj(i + 1, j) and mobj(j + 1, n) is
mobj(i+ 1, n). Thus com1 can be calculated as

det(i, or′)+max{mobj(i+1, n), det(j, dr′)+mobj(j+1, n)}
(10)

• Calculating com2: Since mf1 = mobj(0, i), we have
com2 = max{mobj(0, i), com1}. Based on Eq.(10),

mobj(i+1, n) is no larger than com1. Thus we can safely
combine mobj(i+ 1, n) into com2 as:

com2 = max{mobj(0, i),mobj(i+ 1, n), com1} (11)

= max{mobj(0, n), com1}
• Calculating Objectives: To calculate OBJ(SR+) =
max{com2,mf4} = max{mobj(0, n), com1,mf4},
we first calculate the last two terms and combine
with mobj(0, n). Since both com1 and mf4 contain
det(i, or′), we extract it from {com1,mf4} as follows.

det(i, or′) + max{mobj(i+ 1, n), det(j, dr′) +mobj(j + 1, n),

arr(j) + dis(lj , dr′) + (α− 1)tr′}
Denote par(j) as the terms only related to j as follows.

par(j) = max{det(j, dr′) +mobj(j + 1, n), (12)

arr(j) + dis(lj , dr′) + (α− 1)tr′}
Finally, we can rewrite OBJ(SR+) in Eq.(3) as:

max
{
mobj(0, n), det(i, or′) + max{mobj(i+ 1, n), par(j)}

}

(13)

When i = j, we use a similar way to reduce the time of
pre-calculation. Specifically, since mf2 = 0, we can safely
combine mobj(i+ 1, n) into the objective as

max{mobj(0, i),mobj(i+ 1, n), det(i, r′) +mobj(i+ 1, n)}
= max{mobj(0, n), det(i, r′) +mobj(i+ 1, n)}
When we enumerate i, det(i, or′) is constant. It takes O(1)

time to calculate the objective and check constraints when i =
j. Thus it takes O(n) time in total to calculate the objective
and check the constraints when i = j.
When i < j, even if i is fixed (enumerate), we still need

to check each j (> i) in the naive DP insertion. As next, we
introduce observations on the constraints, which help filter j
that satisfies the capacity and the deadline constraints.

B. Observations on Capacity and Deadline Constraints

Observation on capacity constraint: In the naive DP
insertion (Alg. 3), we can safely break the inner loop of j
according to Lemma. 1. For each i, let brk(i) be the value of
j when it breaks the inner loop. It indicates that the capacity
constraint is not violated for any j larger than i but not
exceeds the breaking point brk(i), i.e., i < j < brk(i). After
comparing the inner loop for adjacent i, i.e., j ∈ (i, brk(i)),
we have the following observation.

Lemma 2. (1) If the capacity constraint is violated when
inserting or′ after the i-th location, i.e. pck(i) > cw − cr′ ,
range (i, brk(i)) is empty. (2) Otherwise, the value of brk(i)
is the same as brk(i+ 1).

Proof. (1) According to Lemma. 1, pck(i) > cw−cr′ indicates
that the capacity constraint is violated when inserting or′ after

i-th. Thus, the inner loop in Alg. 3 will break and range
(i, brk(i)) is empty because brk(i) = i.
(2) First consider the case when pck(i+ 1) > cw − cr′ . In

this case (i, brk(i)) is empty according to (1). If pck(i+1) ≤
cw−cr′ , insertion (i, j) satisfies the capacity constraint for all
j ∈ (i+1, brk(i)). According to Lemma. 1, brk(i) ≤ brk(i+
1). Since we use brk(i+ 1) to denote the rightmost j which
satisfies the capacity constraint, i.e., brk(i+1) ≥ brk(i). Thus,
we have brk(i) = brk(i+ 1).

Observation on deadline constraint: According to the
deadline constraints in Sec. IV-B1, we have the following

observation, as illustrated in Lemma. 3.

Lemma 3. Let thr(j) be a threshold of j,
thr(j) = min{slk(j)− det(j, dr′), er′ − arr(j)− dis(lj , dr′)}.

(14)

Assume the deadline constraint of existing requests is not
violated by inserting or after the i-th location. Insertion (i, j)
would satisfy the deadline constraint, iff the threshold of j is
no less than detour of inserting i, i.e. thr(j) ≥ det(i, or′).

Proof. According to Sec. IV-B1, the deadline constraint will
not be violated iff

(1) det(i, or′) ≤ slk(i);
(2) det(i, or′) + det(j, dr′) ≤ slk(j);
(3) arr(j) + det(i, or′) + dis(lj , dr′) ≤ er′ .
The first condition (i.e., det(i, or′) ≤ slk(i)) can be checked
directly while enumerating i. Assume this condition is true.
We rewrite the remaining two conditions as

det(i, or′) ≤ slk(j)− det(j, dr′),

det(i, or′) ≤ er′ − arr(j)− dis(lj , dr′).

By defining thr(j) as above, we get our conclusion.

In summary, the first observation (from the capacity con-

straint) determines the range of j, i.e., i < j < brk(i). The
second observation (from the deadline constraint) shows that

only some of such j would satisfy both constraints, i.e., those
j whose threshold thr(j) are no less than det(i, or′). In the
coming subsections, as we enumerate i, we aim to calculate

the minimum objective from such j more efficiently, i.e.,

min
i<j<brk(i)

thr(j)≥det(i,or′ )
OBJ(SR+) (15)

C. Segment based Optimization

Basic Idea: If we enumerate i, by utilizing data structure
like segment tree [31], we can directly query the optimal j and
the corresponding objective (i.e., Eq.(15)). Next we explain in
detail how to utilize the segment tree to accelerate constraint

checking and objective calculation.

To efficiently filter those j satisfying the deadline con-
straint (i.e., thr(j) ≥ det(i, or′)), we can construct a segment
tree according to thr(j). As i is fixed, then det(i, or′) is
constant. By querying the segment [det(i, or′),∞), we filter
those j satisfying the deadline constraints.
To efficiently calculate the minimum objective (i.e.,

Eq.(15)), we store par(j) (only related to j) as the value of
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Algorithm 4: Segment based DP Algorithm
input : A worker w with route SR, a new request r

′

output: A new route SR+
1 SR+ ← SR, O

∗ ← ∞, i∗ ← none, j∗ ← none;
2 Pre-calculate pck(·), slk(·), thr(·),mobj(·, n);
3 Construct a segment tree ST;
4 for i← 0 to n do
5 Handle the case when i = j;

6 for i← n− 1 to 0 do
7 Update leaf node thr(i+1) with par(i+1) in ST;
8 if pck(i+ 1) > cw − cr′ then
9 Invalidate ST;
10 if pck(i) ≤ cw − cr′ and det(i, or′) ≤ slk(i) then
11 Query the minimum par(j) from segment

[det(i, or′),∞) in ST;
12 O ← calculate objective according to Eq.(16);

13 if O < O∗ then
14 O∗ ← O, i∗ ← i, j∗ ← j;

15 if O∗ <∞ then
16 SR+ ← insert or′ after li∗ and dr′ after lj∗ in SR;

17 return SR+ ;

each leaf node in the tree. Thus, we can efficiently query the

minimum value of par(j) among previously filtered positions.
As a result, we can efficiently calculate Eq.(15) for a fixed i.
Specifically, the terms in Eq.(13) like mobj(0, n), det(i, or′),
mobj(i+1, n) are constant for a fixed i. Substituting Eq.(13)
into Eq.(15), we have:

max
{
mobj(0, n), det(i, or′) +mobj(i+ 1, n), (16)

det(i, or′) + min
i<j<brk(i)

thr(j)≥det(i,or′ )
{par(j)}

}

To maintain the positions of j from (i, brk(i)) which satisfy
the capacity constraint, we either invalidate the segment tree
or update the segment tree when enumerating i. Specifically, if
inserting or′ after i-th location violates the capacity constraint
(i.e., Lemma. 2 (1)), we mark the tree as invalid; otherwise
(i.e., Lemma. 2 (2)), we update the tree. This way, both
operations are efficient on the segment tree.

In summary, by utilizing segment tree and enumerating i,
we can calculate the optimal j and the corresponding objective
(Eq.(16)) efficiently.

D. Algorithm Details

Alg. 4 illustrates the process of the segment based DP

insertion algorithm. In line 2, we pre-calculate pck(·), slk(·),
thr(·), mobj(·, n) as in Sec. IV-B. In line 3, we construct a
segment tree ST. Next, we handle the case when i = j in lines
4-5. We enumerate i from n− 1 to 0 in line 6. For a fixed i,
we first update the ST with value par(i+ 1) at thr(i+ 1) in
ST in line 7. In lines 8-9, we invalidate the ST if the capacity
constraint of i + 1 is violated. In line 10, we check whether

TABLE VI: Values of notations in Example. 4.

index 0(ow) 1(or1 ) 2(or2 ) 3(dr1 ) 4(or3 ) 5(dr3 ) 6(dr2 )
thr(·) 5.5 7.4 4.5 6.3 5.8 3.3 −1

mobj(·, 6) 24.2 24.2 24.2 24.2 24.2 24.2 24.2
par(·) 29.5 27.6 30.5 30.7 30.7 25.5 25

(a) Segment structure when i = 5. (b) Segment structure when i = 4.

(c) Segment structure when i = 3. (d) Segment structure when i = 2.

(e) Segment structure when i = 1. (f) Segment structure when i = 0.

Fig. 5: Segment structures in Example. 4.

inserting or′ after the i-th violates the capacity and deadline
constraints. If not, we query the optimal j and the minimum
value among segment [det(i, or′),∞) in line 11. In line 12, we
calculate the current objective value according to Eq.(16). In

lines 13-14, we update O∗, i∗ and j∗ according to the current
objective O. Finally, we choose whether to return the new
route SR+ or the original route SR in lines 15-17.
Note that in real-world ridesharing services, the time period

from the pickup to the delivery of a request is usually bounded

and reasonably short. Hence in practice, for a given i, the
number of j which may lead to a feasible insertion is bounded
by a constant and these positions can be maintained by

dynamic structures, e.g. fenwick tree (dynamic version), whose
construction time is O(n) and whose maintain time is O(1).

Example 4. Back to the settings in Example. 1. We aim to
find the minimum maximum flow time of requests. Table VI
summarizes the values after pre-calculation. We have obtained
the values of mobj(·, 6) as shown in Table IV. The values of
thr(·) and par(·) are generated by their definitions in Sec. V-B
and Sec. V-C, respectively. For example, thr(0) is the minimum
of slk(0)−det(0, dr′) and er′−arr(0)−dis(l0, dr′), which is
5.5. Also, par(0) = max{det(0, dr′) +mobj(1, 6), arr(0) +
dis(l0, dr′) + (α− 1)tr′} = 29.5.

Fig. 5 shows the data structure based on thr(·) and its
stored information while enumerating i. In each figure the
values over the axis record the values of par(k) for k from
i to n = 6 and the value in purple represents the newly
inserted one. When i = 5, par(6) = 25 and we update 25
in the structure, as shown in Fig. 5a. Then we query the
optimal par(j) from the segment [det(5, or′),∞) = [8.5,∞)
(blue curve in Fig. 5a). The query returns ∞ (which means
such j does not exist) and we do not update the optimal
route O∗. For i = 4, par(5) = 25.5 is updated. Observe
that det(4, or′) > slk(4), we skip the query. For i = 3, we
update par(4) = 30.7 and the query returns ∞, which is
similar to the case of i = 5. When i = 2, par(3) = 30.7 is
updated. The query from segment [det(2, or′),∞) = [6.3,∞)
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returns the optimal par(j) = 30.7 with j = 3. In this
case the maximum flow time is max{mobj(0, 6), det(2, or′)+
max{mobj(3, 6), 30.7}} = 37 and the corresponding optimal
insertion is (2, 3). For the case i = 1, 30.5 is updated and
the query from segment [det(1, or′),∞) returns the optimal
par(j) = 25.5 with j = 5. In this case the segment (1, 5) leads
to the maximum flow time 26.3. Similarly the case i = 0 leads
to the maximum flow time 28.3. Finally we have the minimum
maximum flow time is 26.3 with the optimal insertion (1, 5).

Complexity Analysis. We analyze the complexity of Alg. 4
with two implementations, segment tree and fenwick tree.

Complexity of Alg. 4 with Segment Tree Implementation.
Pre-calculations in line 2 take O(n) time. In line 3, it takes
O(n log n) to construct a segment tree ST. In lines 4-5, it
takes O(n) to handle the case when i = j. When enumerating
i in lines 6-14, each operation (update in line 7, invalidation
in line 9 and query in line 11) on the segment tree takes at

most O(log n) time. Lines 8, 10, 12-14 take O(1) time. Lines
15-16 take O(n) time. Hence the total time complexity of
Alg. 4 implemented with a segment tree is O(n log n). Since
the pre-calculation only consumes O(n) space and the size
of a segment tree is also O(n), the total space complexity of
Alg. 4 implemented with a segment tree is O(n).

Complexity of Alg. 4 with Fenwick Tree Implementation.
Compared with the segment tree implementation, we construct

a fenwick tree (dynamic version) in O(n) in line 3. With the
fenwick tree implementation, the update (line 7), validation

(line 9) and query (line 11) operations take O(1) time. The
time complexity of the other lines is the same as that of

Alg. 4 with segment tree implementation. Finally, the time

complexity of Alg. 4 with fenwick tree implementation is

O(n). As the size of fenwick tree is also O(n), the total space
complexity is the same as that of Alg. 4 with segment tree

implementation, which is O(n).

VI. EXPERIMENTAL STUDY

This section presents the evaluation of our algorithms.

A. Experimental Setup
Datasets. We experiment with two real datasets (Table VII).
The first dataset [32] (denoted by Taxi) is the trip records of

yellow and green taxis in New York City. We choose the data

on April 09, 2016, which has the largest number of requests

(2nd row in Table VII) in a single day. The dataset is pre-

processed as follows. There are 10, 000 workers whose origins
are uniformly generated on the road network in Taxi. The
origins and the destinations of requests are mapped to the

closest vertex in the road network of New York City extracted

from [33] and the speed on an edge of the road network is

set to be 80% of the maximum legal speed limit. As there

is no capacity information in the dataset, we generate the

capacities of the workers by a Gaussian distribution whose

mean varies from 3 to 20 (2nd row of Table VIII). Considering
that short trips dominate in the requests [34], we vary the

value of er − tr from 10 to 30, which is the period from
release time to deadline of a request (4th row of Table VIII).

To test the algorithms with different amounts of requests, we

TABLE VII: Statistics of datasets.

Dataset Space #(Requests) #(Vertices) #(Edges)
Taxi Road network 517,100 807,795 2,100,632

Logistics Euclidean space 345,849 12,487
Connected between

any vertex

TABLE VIII: Parameter settings.

Parameters Settings

Capacity cw
Taxi: 3, 4, 6, 10, 20

Logistics: 80, 100, 120, 140, 160

Number of requests
Taxi: 20k,40k,60k,80k,100k
Logistics: 2k,4k,6k,8k,10k

Time period from release time
to deadline er − tr (minute)

Taxi: 10, 15, 20, 25, 30

Logistics: original
deadline information

Scalability
Taxi: 100k,200k,300k,400k,500k

Logistics: 60k,120k,180k,240k,300k

extract the first 20k to 100k requests for evaluation (3rd row

of Table VIII). To test the scalability of the algorithms, we

extract the first 100k to 500k requests for evaluation (5th row

of Table VIII). Note the number of requests is not the length

n of a route. The default settings are marked in bold.
The second dataset (denoted by Logistics) comes from

Cainiao [35] , a well-known logistics platform in China, and

is published as the dataset of the parcel delivery contest

in Tianchi [36], an AI developer community. The dataset

contains the origins and the destinations as well as the deadline

information of the parcels (requests) in a day in Shanghai (3rd

row in Table VII). We pre-process Logistics in a similar way
to Taxi and the parameter settings are shown in Table VIII.
In total 150 workers (5, 000 for scalability) are uniformly
generated on the euclidean space to deliver the requests. The

only difference is that we directly use the deadline information

of requests in Logistics.
The experiments are conducted on a server with 40 Intel(R)

Xeon(R) E5 2.30GHz processors with hyper-threading enabled

and 128GB memory. All of the algorithms are implemented

in GNU C++. Each experiment is repeated 10 times and we
show the average results.

Compared Algorithms. We evaluate the performance of the
following algorithms.

• BF (Brute Force) is an O(n3) insertion operator that
enumerates the origin and the destination to find the

optimal insertion (Alg. 1).

• NDP (Naive DP) is an O(n2) insertion operator that
enumerates the origin and the destination to find the

optimal insertion (Alg. 3).

• ST (Segment based DP with segment tree implementa-
tion) only enumerates the origin and finds the optimal

insertion using the segment tree (Alg. 4 implemented with

segment tree). Its time complexity is O(n log n).
• FT (Segment based DP with fenwick tree implementa-
tion) only enumerates the origin and finds the optimal

insertion using the fenwick tree (Alg. 4 implemented with

fenwick tree). Its time complexity is O(n).
• Kinetic [4] is a widely used O(n2) dynamic program-
ming based insertion operator for minimizing the total
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(a) Time for maximum flow time. (b) Memory for maximum flow time.

(c) Time for total travel time. (d) Memory for total travel time.

Fig. 6: Results of varying capacity of workers on Taxi.

travel time.

• LDP [8] is the state-of-the-art dynamic programming

based insertion operator for minimizing the total travel

time. Its time complexity is O(n).

Note that LDP [8] and Kinetic [4] are only applicable in
minimizing the total travel time. Hence we exclude these two

algorithms when comparing the performance to minimize the

maximum flow time.

Metrics. We integrate the above insertion algorithms into
a widely used route planning solution to dynamic rideshar-

ing [2], [4], [8]. Upon arrival of a new request, the solution

inserts a new request to all possible workers who can pick up

the request using the insertion operator and greedily returns

the best insertion locations and the corresponding worker. As

previous works like [37], [38], we compare the memory and

time costs of such a route planning solution with different

implementations of the insertion operator on real-world large-

scale datasets. Specifically, we report the maximum memory
cost during insertion and the total time of all the insertions
on each dataset when using different insertion operators for
ridesharing. Note that the number of insertion operators called

by the greedy solution is the same for different insertion

algorithms. Hence the total memory and time costs can reflect

the performance of these compared algorithms.

B. Experimental Results

Impact of Capacity of Workers. Fig. 6 and Fig. 7 show
the results of varying the capacity of workers on Taxi and
Logistics, respectively. FT has the shortest running time in

both objectives, which is up to 6.4 and 290.8 times faster than

the others on Taxi and Logistics, respectively. Specifically,
when minimizing the total travel time, FT is even slightly

faster than LDP, although both algorithms have a linear time

complexity. With the increase in the capacity of workers,

the time cost of BF grows and the time costs of the other

(a) Time for maximum flow time. (b) Memory for maximum flow time.

(c) Time for total travel time. (d) Memory for total travel time.

Fig. 7: Results of varying capacity of workers on Logistics.

algorithms remain stable on Taxi. On Logistics, the time costs
of all the algorithms are stable. This may be because with a

small capacity (on Taxi) the length of routes is dominated by
the capacity while when the capacity increases, the length of

routes is limited by the number of the requests. The memory

costs of all the algorithms except NDP remain almost the same

when varying the capacity of workers, while BF consumes the

least memory. Note that the memory cost of NDP changes in a

similar trend to that of ST and FT but is more notable, due to

its O(n2) space complexity. ST and FT only consume slightly
more memory than BF (less than 80 KB), which validates the
memory efficiency of these two algorithms.

Impact of Number of Requests. Fig. 8 and Fig. 10 show
the results of varying the number of requests on Taxi and Lo-
gistics, respectively. FT still outperforms the other algorithms
in terms of the running time when minimizing the maximum

flow time, i.e., 2.2 and 998.1 times faster than BF on Taxi
and Logistics, respectively. When minimizing the total travel
time, FT is faster than LDP on Taxi and is as fast as LDP on
Logistics and both of them are faster than the other algorithms.
With the increasing number of requests, the time costs of all

the algorithms increase on both Taxi and Logistics. This is
because with the increase of number of requests, workers tend

to obtain a longer route and thus need longer time to complete

the route. As for memory, BF still has the lowest memory

consumption. NDP performs the worst as it consumes O(n2)
memory to store the variables. The gap of memory cost among

algorithms (except NDP) is marginal (less than 0.1 MB).

Impact of Deadline of Requests. Fig. 9 shows the results of
varying the deadline on Taxi. The horizontal axis represents
the values of er − tr. FT is again the fastest among all the
algorithms, which is up to 3.7 times faster. With the increase

of er − tr, the time costs of all the algorithms increase, while
those of FT and LDP increase slower than BF, Kinetic, ST and

NDP. This is because with a larger deadline, more requests
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(a) Time for maximum flow time. (b) Memory for maximum flow time.

(c) Time for total travel time. (d) Memory for total travel time.

Fig. 8: Results of varying # of requests on Taxi.

(a) Time for maximum flow time. (b) Memory for maximum flow time.

(c) Time for total travel time. (d) Memory for total travel time.

Fig. 9: Results of varying er − tr on Taxi.

can be inserted into the route, and FT and LDP have a lower

time complexity. The memory costs of all the algorithms

remain stable with the increase of the deadlines of requests

except NDP. Again BF has the lowest memory costs, while

the memory costs of ST and FT are only slightly higher (less

than 20 KB more memory). NDP consumes the most memory.

Scalability. Fig. 11 shows the experimental results on scal-
ability. We omit the memory cost due to limited space. On

Logistics, BF and NDP fail to terminate in two days so we
omit the results of these experiments. FT runs faster than

the other algorithms in both objectives. With the increase of

requests, the time costs of all the algorithms increase while

the time costs of FT and LDP have a lower increasing speed.

The results show that our proposed algorithms, ST and FT,

are fit for large-scale datasets.

Comparison between Datasets. Comparing the results on

(a) Time for maximum flow time. (b) Memory for maximum flow time.

(c) Time for total travel time. (d) Memory for total travel time.

Fig. 10: Results of varying # of requests on Logistics.

(a) Maximum flow time on Taxi. (b) Maximum flow time on Logistics.

(c) Total travel time on Taxi. (d) Total travel time on Logistics.

Fig. 11: Results of scalability test on # of requests.

Taxi (Fig. 6, Fig. 8, Fig. 9 and Fig. 11) and Logistics (Fig. 7,
Fig. 10 and Fig. 11), we have the following observations.

• On both datasets FT outperforms the other algorithms in

terms of running time, except for Fig. 10c where LDP

runs as fast as FT.

• All the algorithms consume more memory on Logistics
(40-2500 KB) than on Taxi (10-140 KB). This may be
because on Logistics requests have a larger capacity than
on Taxi. This leads to more feasible insertion locations
for each request and increases the memory cost.

Summary of Experimental Results. We summarize our
experimental findings as follows.

• Insertion with the straightforward implementation (i.e.,
BF) is impractical for real-world dynamic ridesharing

applications (more than 24 hours on Logistics).
• Our algorithms NDP, ST and FT are 1.5 to 6.4 times
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faster than BF on Taxi, and are 4.3 to 998.1 times faster
than BF on Logistics.

• Our ST algorithm is up to 2.0 times and 5.1 times faster

than NDP on Taxi and Logistics, while our FT algorithm
is even faster, i.e., 2.9 to 7.6 times faster than NDP.

• For the objective to minimize the total travel time, our

algorithm FT runs faster than LDP, the state-of-the-art

insertion to minimize the total travel time, in most of the

experiments. Note that our FT algorithm also runs the

fastest when minimizing the maximum flow time.

• The memory costs of ST and FT are only slightly larger

(within 0.1 MB) than the memory usage of BF.

VII. CONCLUSION

In this paper, we study the insertion operator, a widely used

core operation in real-world dynamic ridesharing applications.

A straightforward implementation of the insertion operator

takes O(n3) time to obtain the optimal insertion locations.
We propose a partition framework and devise a novel dynamic

programming based insertion operator to reduce the time com-

plexity of the generic insertion operator from O(n3) to O(n2).
Leveraging fenwick tree, we further propose a linear insertion

operator. Extensive experiments on real datasets validate the

efficiency and scalability of our insertion operator. Particularly,

the insertion operator can be accelerated by 1.5 to 998.1 times

on urban-scale datasets.
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